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it. For example, training on an image of cat has a greater

IntI‘OduCtiOn effect on other images of cats than images of, say, dogs. The Sep al'ati()ll Theorem Imitating DNN DynamiCS
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Local Elasticity: training on a sample has larger

effects on samples similar to it than those dissimilar to

. L - - Estimating the LE Matrix
Understanding the training dynamics of deep learning models is perhaps a Our main contributions include the following separation theorem. °

necessary step toward demystifying their effectiveness. In particular, Under the I-model and the L-model, the solutions to the LE-ODE can be solved

Theorem (Separation of LE-SDE)
Suppose y(t) = a(t) — 5(t) > 0, assume H = (Hy), is positive semi-definite (PSD) with positive
diagonal entries. Ast — oo, we have

exactly, whence we are able to estimate the LE matrix in terms of the

how do data from different classes gradually become separable in their feature parameters a(t) and B(t) based on their cumulative functions A(t) and B(t).

spaces when training neural networks using stochastic gradient descent? 1. ify(t) = w (1/t), the features are separable with probability tending to 1; ol "
2. ify(t) = o (1/t), and the number of per-class-feature n tending to oo at an arbitrarily slow rate, the o 5O | o 40
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We take a phenomenological approach to model feature evolutions of neural Z. V| E o =z ] F o
net training using a set of stochastic differential equations (SDEs) that each Here, v(t) = w (1/t) stands for y(t) > 1/tast — co. For example, 1/t%° = w (1/t) and ” s
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corresponds to a training sample. Concretely, for binary classification, with m (tInt) o(1/t)ast — oo.
(@) GeoMNIST (I-model). (b) GeoMNIST (I-model). (C) CIFAR (I-model). (d) CIFAR (-model).
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impact: if and only if the SDEs are locally elastic in the sense that the impact " pen (% cormupted label) " pen (% cormpted label) Table 1: Modeling choices for H, where d; = ¢/ — 11, forj € [K]. Imitating DNN Dynamics and Evaluations

Figure 1(a): Estimated tail indices under I-model. Figure 1(b): Estimated tail indices under L-model.

Is more significant on samples from the same class as the input, the features With E(t) estimated, we can simulate the LE-SDE using say forward Euler

as shown in Table 1, from simulations on GeoMNIST, a dataset consisting of three goodness-of-fit via the following relative difference (RD, the lower the better):
The LE'SDE/LE'ODE MOdel geometric shapes, using a variant of the AlexNet. We show in Figures 1 the estimated o 1X(0) — #(0)]|
RDK(t) = H
tail index ry (-Ina(t) = C-rqlnt) versus the corrupted label ratio per. AS per increases, ' (@, + I#©ll,) /2

We define the generic feature vector X(t) = (X*(t))<_ RX as the concate- L , . . _
J (1) = (X(t) )iz € we expect LE effects diminish since the dataset is becoming more like random data.

nation of p-dimensional feature vectors from K classes, and model its . " . w— % L
| ~ 3 | e In the I-model (Figure 1(a)), a clear phase transition for the tail of (o - ) occurs , i ) |
dynamics as dX(t) = M(t)X(t) dt + X(t) dB,, where the drift M(t) = (E(t) ® P) o H o Sul g S
_ _ o around per= 2/3, when the dataset has completely random labels. < =, _4 =
consists of the LE matrix E(t) that encodes the strengths of local elasticity _ . . . N .
| T | e Although in the L-model (Figure 1(b)), the phase transition for the tail is less ot
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and (), and a sampling matrix P modeling randomnesses from such as mini- Corollary: Connection with Neural Collapse Fiqure 4: Simulated and gentine logic trajectories
batch sampling and label corruption, and imbalanced datasets. Here, B : : . . |
Ping P ! ot Neural collapsel4®l is a recent phenomenological finding on the geometry of logits of -
denotes standard Brownian motion. . . .
DNNs at convergence: they tend to form equiangular tight frames (ETFs). Let B(t) 2. S 2 1
The simplest LE matrix consists of two values a(t) and B(t). In this case, In ST :
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