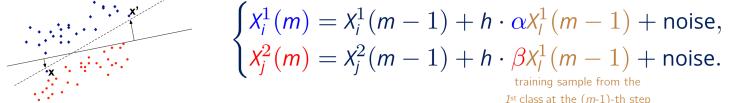
Imitating Deep Learning Dynamics via <u>Locally Elastic</u> Stochastic Differential Equations

Local Elasticity: training on a sample has larger effects on samples similar to it than those dissimilar to it. For example, training on an image of cat has a greater effect on other images of cats than images of, say, dogs.

Understanding the training dynamics of deep learning models is perhaps a necessary step toward demystifying their effectiveness. In particular,

how do data from different classes gradually become **separable in their feature spaces** when training neural networks using stochastic gradient descent?

We take a *phenomenological approach* to model feature evolutions of neural net training using a set of stochastic differential equations (SDEs) that *each corresponds to a training sample*. Concretely, for binary classification, with *m* being time, superscripts class indices, subscripts sample indices, and (α, β) parameters measuring the strengths of *local elasticity*^[1-3], we model



- 1) + noise. from the p-1)-th step tion regarding the intra-class

Our main finding uncovers a **sharp phase transition** regarding the *intra-class* impact: if and only if the SDEs are *locally elastic* in the sense that the impact is more significant on samples from the same class as the input, the features of the training data are asymptotically linearly separable.

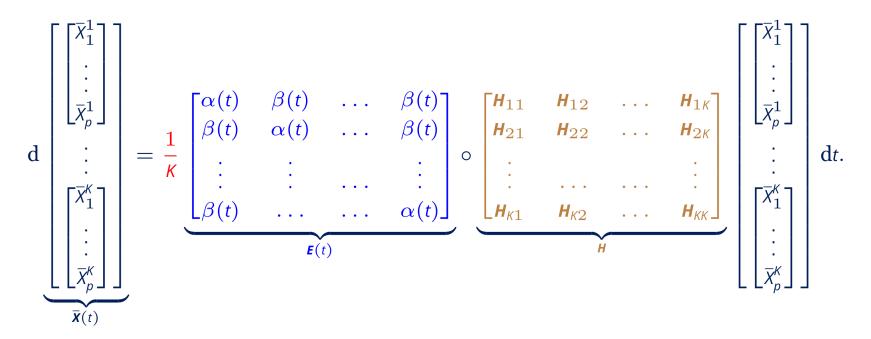
The LE-SDE/LE-ODE Model

We define the generic feature vector $\tilde{\mathbf{X}}(t) = (\tilde{\mathbf{X}}^k(t))_{k=1}^{\kappa} \in \mathbb{R}^{\kappa p}$ as the concatenation of *p*-dimensional feature vectors from *K* classes, and model its dynamics as $d\tilde{\mathbf{X}}(t) = \mathbf{M}(t)\tilde{\mathbf{X}}(t) dt + \mathbf{\Sigma}(t) d\mathbf{B}_t$, where the drift $\mathbf{M}(t) = (\mathbf{E}(t) \otimes \mathbf{P}) \circ \mathbf{H}$ consists of the LE matrix $\mathbf{E}(t)$ that encodes the strengths of local elasticity (analogous to the magnitudes of α and β), the similarity matrix \mathbf{H} that encodes the direction in which features interacts (analogous to the phase of α and β), and a sampling matrix \mathbf{P} modeling randomnesses from such as minibatch sampling and label corruption, and imbalanced datasets. Here, \mathbf{B}_t denotes standard Brownian motion.

The simplest LE matrix consists of two values $\alpha(t)$ and $\beta(t)$. In this case, in the large sample limit, we obtain the following LE-ODE for the mean features, where \circ denotes the Hadamard product (with a slight abuse of notation):

$$\mathrm{d}ar{\mathbf{X}}(t) = \mathbf{M}(t)ar{\mathbf{X}}(t)\,\mathrm{d}t = \left(\left(\mathbf{E}(t)\otimes\mathbf{P}\right)\circ\mathbf{H}
ight)ar{\mathbf{X}}(t)\,\mathrm{d}t$$

When $P = \mathbf{1}\mathbf{1}^{\top}/K$, we write the LE-ODE as the follows where $\bar{\mathbf{X}} = \mathbb{E}_{data}\tilde{\mathbf{X}}$:



The Separation Theorem

Our main contributions include the following separation theorem.

Theorem (Separation of LE-SDE)

Suppose $\gamma(t) = \alpha(t) - \beta(t) > 0$, assume $\mathbf{H} = (\mathbf{H}_{ij})_{ij}$ is positive semi-definite (PSD) with positive diagonal entries. As $t \to \infty$, we have

- 1. if $\gamma(t) = \omega \, (1/t)$, the features are separable with probability tending to 1;
- 2. *if* $\gamma(t) = o(1/t)$, and the number of per-class-feature n tending to ∞ at an arbitrarily slow rate, the features are asymptotically pairwise separable with probability 0.

Here, $\gamma(t) = \omega (1/t)$ stands for $\gamma(t) \gg 1/t$ as $t \to \infty$. For example, $1/t^{0.5} = \omega (1/t)$ and $(t \ln t)^{-1} = o (1/t)$ as $t \to \infty$.

Visualizing Phase Transition

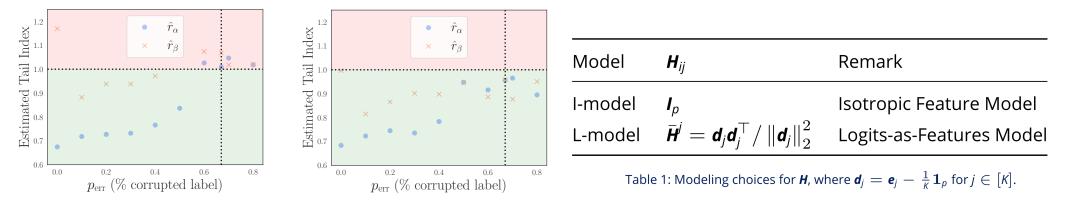


Figure 1(a): Estimated tail indices under I-model. Figure 1(b): Estimated tail indices under L-model.

We estimate the LE matrix under *different modeling choices* of the similarity matrix H, as shown in Table 1, from simulations on GeoMNIST, a dataset consisting of three geometric shapes, using a variant of the AlexNet. We show in Figures 1 the estimated tail index r_{α} ($-\ln\alpha(t) \approx C - r_{\alpha}\ln t$) versus the corrupted label ratio p_{err} . As p_{err} increases, we expect LE effects diminish since the dataset is becoming more like random data.

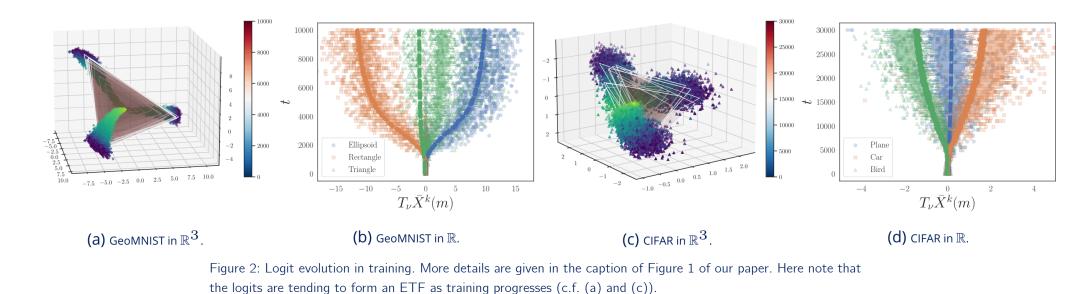
- In the I-model (Figure 1(a)), a clear phase transition for the tail of $(\alpha \beta)$ occurs around $p_{err} = 2/3$, when the dataset has completely random labels.
- Although in the L-model (Figure 1(b)), the phase transition for the tail is less obvious, note around $p_{err} = 2/3$ the index of β begins to dominate that of α .

Corollary: Connection with Neural Collapse

Neural collapse^[4-5] is a recent phenomenological finding on the geometry of logits of DNNs at convergence: they tend to form *equiangular tight frames* (ETFs). Let B(t) be the definite integral of $\beta(\tau)$ from $\tau = 0$ to $\tau = t$, we have the following corollary.

Proposition (Neural Collapse of the LE-ODE)

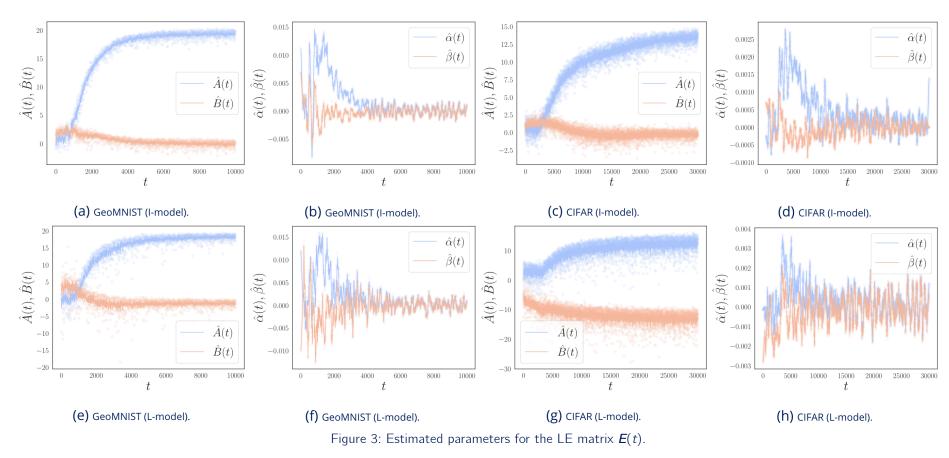
Under L-model and the same setup as in Theorem 1, if $\gamma(t) > 0$ and there exists some T > 0 such that B(t) < 0 for $t \ge T$, then $\{\bar{\mathbf{X}}^k(t)/\|\bar{\mathbf{X}}^k(t)\|\}_{k=1}^{\kappa}$ forms an ETF as $t \to \infty$.



Imitating DNN Dynamics

Estimating the LE Matrix

Under the I-model and the L-model, the solutions to the LE-ODE can be solved exactly, whence we are able to estimate the LE matrix in terms of the parameters $\alpha(t)$ and $\beta(t)$ based on their cumulative functions A(t) and B(t).



Imitating DNN Dynamics and Evaluations

With E(t) estimated, we can simulate the LE-SDE using say forward Euler method to test if our model specification is reasonably correct. We assess the goodness-of-fit via the following relative difference (RD, the lower the better):

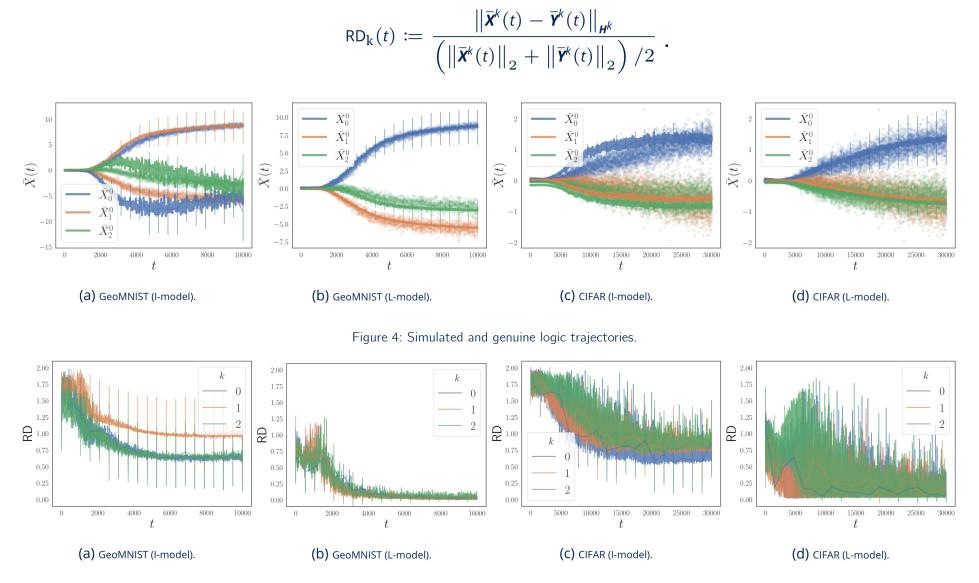
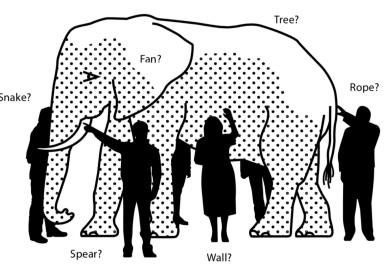


Figure 5: Relative difference (RD) between simulated and genuine trajectories.

References

- [1] H. He and W. J. Su, *The local elasticity of neural networks*, ICLR, 2020.
- [2] S. Chen, H. He, W. J. Su, Label-aware neural tangent kernel: Toward better generalization and local elasticity, NeurIPS, 2020. [3] Z. Deng, H. He, W. J. Su, Toward better generalization bounds with locally elastic stability, ICML, 2021.
- [4] V. Papyan, X. Y. Han, and D. L. Donoho, *Prevalence of neural collapse during the terminal phase of deep learning training*, PNAS, 2020.
- [5] C. Fang, H. He, Q. Long, and W. J. Su, *Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training*, PNAS, 2021.



[Paper]

