
Understanding the training dynamics of deep learning models is perhaps a 
necessary step toward demystifying their effectiveness. In particular,


how do data from different classes gradually become separable in their feature 
spaces when training neural networks using stochastic gradient descent? 


We take a phenomenological approach to model feature evolutions of neural 
net training using a set of stochastic differential equations (SDEs) that each 
corresponds to a training sample. Concretely, for binary classification, with m 
being time, superscripts class indices, subscripts sample indices, and (α, β) 
parameters measuring the strengths of local elasticity[1-3], we model


Our main finding uncovers a sharp phase transition regarding the intra-class 
impact: if and only if the SDEs are locally elastic in the sense that the impact 
is more significant on samples from the same class as the input, the features 
of the training data are asymptotically linearly separable.


Imitating Deep Learning Dynamics

via Locally Elastic Stochastic Differential Equations

Introduction The Separation Theorem
Our main contributions include the following separation theorem.

The LE-SDE/LE-ODE Model
We define the generic feature vector                                as   the concate-
nation of p-dimensional feature vectors from K classes, and model its 
dynamics as                                       where the drift

consists of the LE matrix E(t) that encodes the strengths of local elasticity 
(analogous to the magnitudes of α and β), the similarity matrix H that 
encodes the direction in which features interacts (analogous to the phase of α 
and β), and a sampling matrix P modeling randomnesses from such as mini-
batch sampling and label corruption, and imbalanced datasets. Here, Bt 
denotes standard Brownian motion.

The simplest LE matrix consists of two values α(t) and β(t). In this case, in 
the large sample limit, we obtain the following LE-ODE for the mean features, 
where    denotes the Hadamard product (with a slight abuse of notation):


When P = 11T/K, we write the LE-ODE as the follows where
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Visualizing Phase Transition

Figure 1(a): Estimated tail indices under I-model. Figure 1(b): Estimated tail indices under L-model.

We estimate the LE matrix under different modeling choices of the similarity matrix H, 
as shown in Table 1, from simulations on GeoMNIST, a dataset consisting of three 
geometric shapes, using a variant of the AlexNet. We show in Figures 1 the estimated 

tail index rα (-lnα(t) ≈ C-rαlnt) versus the corrupted label ratio perr. As perr increases, 
we expect LE effects diminish since the dataset is becoming more like random data.

• In the I-model (Figure 1(a)), a clear phase transition for the tail of (α - β) occurs 

around perr = 2/3, when the dataset has completely random labels.

• Although in the L-model (Figure 1(b)), the phase transition for the tail is less 

obvious, note around perr = 2/3 the index of β begins to dominate that of α.

Corollary: Connection with Neural Collapse
Neural collapse[4-5] is a recent phenomenological finding on the geometry of logits of

DNNs at convergence: they tend to form equiangular tight frames (ETFs). Let B(t) 
be the definite integral of β(τ) from τ = 0 to τ = t, we have the following corollary.


Figure 2: Logit evolution in training. More details are given in the caption of Figure 1 of our paper. Here note that 
the logits are tending to form an ETF as training progresses (c.f. (a) and (c)).

Imitating DNN Dynamics
Estimating the LE Matrix

Under the I-model and the L-model, the solutions to the LE-ODE can be solved 
exactly, whence we are able to estimate the LE matrix in terms of the 
parameters α(t) and β(t) based on their cumulative functions A(t) and B(t).

Figure 3: Estimated parameters for the LE matrix E(t).

Imitating DNN Dynamics and Evaluations
With E(t) estimated, we can simulate the LE-SDE using say forward Euler 
method to test if our model specification is reasonably correct. We assess the 
goodness-of-fit via the following relative difference (RD, the lower the better):

Figure 4: Simulated and genuine logic trajectories.

Figure 5: Relative difference (RD) between simulated and genuine trajectories.

[Paper][Slides][Video]

.

Local Elasticity: training on a sample has larger 
effects on samples similar to it than those dissimilar to 
it. For example, training on an image of cat has a greater 
effect on other images of cats than images of, say, dogs.

training sample from the 

1st class at the (m-1)-th step


