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Abstract

In this paper, we present the weak neural dependence lemma in deep neural net-
works (DNN) with wide fully-connected layers and arbitrary nonlinear activations.
The lemma states that any two pre-activations of the same layer have arbitrarily
low dependence regardless of the training stage. To the best of our knowledge, we
are the first to give a formal treatment of this phenomenon aided by tools from
information theory. Our simulations on MNIST/CIFAR-10 corroborate with the
theory. We conclude this paper by the discussion of several implications of the
lemma.

1 Introduction

We consider deep neural networks (DNNs) of D fully connected layers (Multi-Layer Perceptrons,
MLPs) with arbitrary nonlinear activation φ(·). We denote by x

(t)
l the post-activations of layer l

at training time t, and z
(t)
l the pre-activations (which we colloquially refer to as neurons or neural

activities). We assume weights and biases are initialized as iid zero-mean Gaussians, but the biases
may be taken to be zero without loss of generality for our purpose. For ease of exposition, we assume
all layers contain Nl = N ∈ N neurons except the last layer, which contains ND = C neurons and is
softmax-activated, where C is the number of label classes.

Previous work has utilized a similar notion of independence to model activations as iid Gaussians in
untrained nets [LBN+17, PLR+16]. Information-theoretic methods have also been widely used in the
machine learning community. Recent examples include the InfoGAN [CDH+16] for training GANs
in an intepretable way; L2X [CSWJ18] for model interpretation; and the not-so-recent information
bottleneck method [TPB00] - albeit successes in latent-variables models [AFDM16, APF+17] -
whose direct extension to vanilla DNNs remains under debate [TZ15, SBD+18].

In this work, we study the dependence between two neurons from the same layer, captured by the
mutual information (MI) between them, and prove the weak neural dependence lemma, stating that
the change of the said MI is upperbounded by the change of individual neuron entropy, a quantity we
assume to be unchanged in sufficiently wide nets whence the lemma holds. Simulations of MLPs on
MNIST/CIFAR-10 support the assumption and the lemma, where we observe a width larger than 100
usually suffices; hence we expect the lemma to be useful for reasonably wide nets.

The implications of the lemma are multifold. First, the central limit theore suggests the neural
activities are approximately Gaussians in the wide nets regardless of the training stage. This enables
one leveraging properties of Gaussians, often much easier, to understand DNNs; second, based on the
limiting behaviour of entropies, we argue that nets do not need to be too wide; lastly, although we
prove the lemma for pre-activations of MLPs, the extension to post-activations can be made directly
under the same proof framework.
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†UC Berkeley, {ruoxijia, dawnsong}@berkeley.edu.
‡UIUC, bli@illinois.edu.
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Figure 1: (a) MLP model used in this paper. (b) Notation used in the proof, ΘS include all parameters
that contribute to {xk}k∈S .

2 Constant Entropy Assumption

The core of our result is built up on the assumption regarding the entropy of individual neurons during
training. Recall the (differential) entropy of a random vector x is H(x) =

∫
p(x) log p(x) dx ∈ R,

whenever exists; and the MI between two random vectors x,y is I(x;y) = H(x)−H(x|y) ≥ 0.
Let z be an arbitrary neuron from any layer but the last. Intuitively, if the layer containing z is
sufficiently large, a single neuron is not overall important, and thereby the distribution of z should
not differ much from its initialization. In other words, the change of H(z), ∆H(z), after training,
should approach to zero with infinite Nl:
Assumption 1 (Constant Entropy for Neurons in Wide Layers).

lim
Nl→∞

∆H(z) = 0. (1)
We give the empirical validation of Assumption 1 in Section 4.

3 The Weak Neural Dependence Lemma

Going one step further, if a single neuron is not overall important, any two of them should not be
dependent on each other much. This is formalized in the following theorem:
Theorem 1 (Weak Neural Dependence Lemma).
Let I be the MI of any two neurons in some layer l other than the last, we have lim

Nl→∞
I = 0.

For simplicity, we may sometimes write ∆A to denote the change of quantity A from time 0 to t,
and H(t)

i to denote H(x
(t)
i ), Θ the trainable parameters in the network, xi, xj two neurons from

some layer other than the last. and ΘS the subset of parameters from Θ that contributes to the
distribution of xk at a particular training time, for all k ∈ S. This subset is exactly all weights that in
the preceding layers, union the weights in the l-th layer that connects to xk. We illustrate this subset
in Figure 1b. We write Θ̄S to denote the complement Θ/ΘS .

When t = 0, since Θ is initialized as iid Gaussians, invoking the central limit theorem, neuron
activities from the same layer are iid Gaussian with zero mean. Consequently, I(0)i,j = 0. The case for
trained net is more involved. We first write out the MI by definition:

I
(
x
(t)
i ;x

(t)
j

)
= H

(
x
(t)
i

)
−H

(
x
(t)
i |x

(t)
j

)
. (2)

In view of the entropies, there are two sources of uncertainty, namely the data distribution, and
the parameter distribution on Θ. For example, shuffling weights in a delicate manner may result a
network computing the same function. Since conditioning reduces entropy, we have

H
(
x
(t)
i |x

(t)
j ,Θ

(t)
{i,j} = Θ

(0)
{i,j}

)
≤ H

(
x
(t)
i |x

(t)
j

)
. (3)

Further noted since xi is independent of all parameters that do not contribute to it during the forward
pass, we have4

H
(
x
(0)
i |x

(0)
j

)
= H

(
x
(t)
i |x

(t)
j ,Θ

(t)
{i,j} = Θ

(0)
{i,j}

)
. (4)

4See supplementary for more discussions on this step.

2



101 102 103

N

4.50

4.75

5.00

5.25

H̄

Layer 1

101 102 103

N

−15

−10

−5

0

H̄

Layer 2

101 102 103

N

−15

−10

−5

0

H̄

Layer 3

101 102 103

N

−15

−10

−5

0

H̄

Layer 4

101 102 103

N
−20

−15

−10

−5

0

H̄

Layer 5

S
0
50
100
150
200
250
300

(a) φ = tanh.
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(b) φ = ReLU.
Figure 2: Average neuron entropy H̄ of each layer from a 5-layer φ-activated MLP against different
network width. Noted the convergence behaviour is more important whereas the actual values are
data- and model-agnostic.

Combining Equations (3) and (4), we have

H
(
x
(t)
i |x

(t)
j

)
≥ H

(
x
(0)
i |x

(0)
j

)
. (5)

We remark that the equality Θ
(t)
{i,j} = Θ

(0)
{i,j} is in distribution. For this “conditioning backward in

time” to be valid, we mush show that there exists a configuration in which the network computes
the same function as it is at time t, but with Θ

(t)
{i,j} = Θ

(0)
{i,j}. This is guaranteed by the universal

approximation theorem [Hor91] for all layers but the last (since they have at least one trainable layers
appended) such that the network is able to approximate the same function as before. On the other
hand, it may be instinctive to consider if the reverse conditioning holds, that is, if we could condition
on

H
(
x
(t)
i |x

(t)
j

)
= H

(
x
(0)
i |x

(0)
j ,Θ

(0)
{i,j} = Θ

(t)
{i,j}

)
. (6)

and perform a similar argument. Unfortunately, this in general does not apply since the initial
parameter distribution is considered fixed a priori (e.g., most commonly Gaussians) while the
distribution Θ

(t)
{i,j} after actually training to time t may not have the same distribution.

Now combining Equations (4) and (5) yields

I
(
x
(t)
i ;x

(t)
j

)
= H

(
x
(t)
i

)
−H

(
x
(t)
i |x

(t)
j

)
≤ H

(
x
(t)
i

)
−H

(
x
(0)
i |x

(0)
j

)
. (7)

Following (7), we have ∆Ii;j ≤ ∆Hi; applying Assumption 1 yields lim
Nl→∞

∆Ii;j ≤ 0, but I(0)i;j = 0,

hence lim
Nl→∞

Ii;j = 0, completing the proof.

4 Experiments and Results

We trained a five-layer variant of the model specified in Figure 1a with either ReLU or tanh activation
on MNIST (CIFAR-10 given in the Appendix) to convergence after 300 epochs, using stochastic
gradient descent with constant learning rate η = 0.001. We selected 14 different widths ranging
from 5 to 1000. For N > 20, The ReLU activated nets achieve > 99% training accuracy and
> 95% validation accuracy; the tanh-activated nets > 95% and > 92% respectively. However, with
5 ≤ N < 20, the performances were usually worse. We used a fixed random sample of 1000 training
images (100 per class) to estimate the entropies and the MI, where the details are left to the Appendix.

We present in Figure 2 the average neuron entropy H̄ of different layers for tanh (Figure 2a) and
ReLU (Figure 2b) activated nets. Noted with sufficiently large N , ∆H becomes insignificant,
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(b) φ = ReLU.
Figure 3: Dependence score ι of each layer for different activations against different network width.

supporting Assumption 1. To obtain an overall picture of the MI, we define the dependence score ιl
to be the average pairwise MI in the l-th layer. We show in Figure 3 the score ι against the network
width. Given two independent standard Gaussian sample with 1000 points, the MI estimator gives
0.012 ± 0.042 over 1000 trials, hence we may roughly view 0.01 as a threshold for independence
(depicted as the black dotted line in Figure 3). Noted the MIs of all layers but the last converged to
the vicinity of this threshold, indicating neurons are nearly independent. Intuitively, since the last
layer is unnormalized probabilities, there should be dependence between them: higher likelihood in
one class results lower in another. More concretely in this example, a width larger than 200 usually
suffices for the theory, and we expect in practice the lemma works well for reasonably wide nets.

5 Consequences of the Lemma

We offer a short discussion on the consequences of the lemma in this section.

Applicable to pre-activations. The extension of the lemma to pre-activations can be made with ease
by redoing the proof. In tanh-activated nets, the extension is even simpler since MI is invariant to
reparameterization given by homeomorphisms (smooth invertible maps), in particular tanh−1.

Neural activities as multi-variate Gaussians. When one looks at a particular a network at some
training stage, by central limit theorem, the activations are approximately Gaussians. This approxi-
mation have been used in multiple previous work [PLR+16, LBN+17] in untrained nets, our results
further suggest that the same holds for trained MLPs given reasonably wide layers.

Layers do not have to be too wide. The average individual neuron entropy exhibited a convergence
behaviour, and is correlated with the training accuracy (not shown). Information-theoretically
speaking, the average entropy characterizes the uncertainty in neural activities, and may relate to
the capacity in terms of the the uncertainty/diversity of hidden features. Increasing layer width after
convergence at a high cost of computation, therefore, may not induce further gain.

6 Conclusions

In this paper, we presented and proved the weak neural dependence lemma for wide MLPs. We
tested this lemma on MLPs trained on MNIST/CIFAR-10 and discussed several implications, which
may of independent interest. Future directions may include the study of the underlying mechanism
that more rigorously justify and prove Assumption 1 and theorem 1, strengthening the lemma from
pairwise independence to general independence, as well more exhaustive experiments on different
architectures.
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Figure A.1: Examples of estimating entropy and MI. (a) Entropy estimate of a standard Gaussian
sample of size 1000, varying the parameter k; (b) Fixing k = 3, varying the sample size M of
standard Gaussian samples; (c) Consider a bivariate Guassian, where the variance of one variable is
108 higher than the other, stabilization by the sample standard deviation reduces the bias in estimation.

Appendix

Note: Python code for reproducing all results in this paper will be released upon publication.

A Estimating Differential Entropy and Mutual Information

Estimating information-theoretic quantities in the case of continuous random variables has attracted
many attention in research and is general perceived to be notoriously hard in high dimensions. In this
paper, we stick to a simple k-NN based estimator that have been proven consistent and is usually
good enough in practice for moderately large sample size [KSG04]. For more discussion on this
topic, we recommend inquisitive readers to consult [Pan03] and subsequent work.

We now discuss in details the estimating procedure. For a set of data points {xi}Mi=1 in Rd equipped
with L∞ norm, the MI estimator gives

Ĥ(x) = ψ(M)− ψ(k) +
d

M

M∑
i=1

log εi, (A.1)

where ψ(·) is the digamma function, and εi is twice the distance between xi and its k-nearest
neighbors. In practice, we follow the guidelines in [KSG04] to set 2 ≤ k ≤ 5. We estimate the MI
by the “3H” method, i.e., I(x;y) = H(x) +H(y)−H(x,y) [KSG04].

We found in our experiments that the choice of k is in general less important so long as we follow the
recommendations; and a sample size of around 1000 strikes the balance between estimation bias and
computation burden. As an illustrative example, we consider a random standard Gaussian sample of
size M , where we present in Figure A.1a the effects of k (with M = 1000), and in Figure A.1b the
sample size M (with k = 3). Noted the biases are tolerable with M = 1000 and k = 3. Nonetheless,
we must remark on a few nuances here regarding estimating MI. In general, if Varx and Var y do not
differ much, we found the estimator Î gives a faithful estimate in general (not shown here). However,
in the rare case when Varx ≪ Var y, Î may yield a negative estimate. To reduce the bias in this
case and make the estimate legitimate, we stabilize each set of samples by its standard deviation. In
theory, this should not alter the value of the MI, which, as we remarked in Section 5, is invariant
to homeomorphisms, in particular scaling by a scalar. Indeed, consider the example of a sample of
size 1000 from some bivariate Guassian (x, y), where σx = 0.0001 and σy = 1. We illustrate in
Figure A.1c the estimates from the vanilla estimator and the one with stabilization, where we vary
the correlation coefficient ρ between x and y. Noted the vanilla estimator severely underestimated
the MI; with stabilization, the estimator is able to provide a more accurate estimate of the theoretical
MI (given in black line). Although this pathological example may be seemingly rare in practice, such
wildly-behaved neuron pairs may indeed emerge when data become more diverse (e.g., CIFAR-10).
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(a) Average entropy H̄ .
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(b) Dependence score ι.
Figure B.1: Simulation results on CIFAR-10. We used the same model architecture (ReLU activation)
and training configurations as in the MNIST. The observations we made previously in Section 4 still
apply.
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Figure B.2: Average entropy H̄ from two dense layers of a convolutional net trained on CIFAR-10.

B Simulation Results of MLP and Convolutional Nets on CIFAR-10

In this section, we demonstrate the simulation on CIFAR-10. We used the same model architecture
as we did on MNIST with ReLU activation, and the same training configurations. We present
the results in Figure B.1. Noted the average entropy exhibits a similar convergence behaviour
(Figure B.1a) required by Assumption 1 thus suggesting Theorem 1 should be applicable to this case.
Indeed, in Figure B.1b, we observe a similar weak neural dependence phenomenon, and noted in low
width regimes, the behaviour of the dependence score ι is less regular. We remark that even after
stabilization, on some occasion, the estimator Î gave a value slightly less than zero. This may be in
part due to the insufficiently large sample size as CIFAR-10 is more diverse. Nonetheless, this does
not affect the conclusion since those values outputted by Î are still within a tolerable margin at the
vicinity of 0.

We also did a pilot simulation on convolutional nets trained on CIFAR-10. We used a variant of the
“all-convolutional-nets” [SDBR15], which two ReLU-activated dense layers are appended after five
convolutional layers. We tested Assumption 1 on those two dense layers, and found the assumption
seems not apply. Hence future studies may focus on the applicability of the assumptions and the
lemma to the convolutional nets.

C Discussion on the Proof of Theorem 1.

In the proof of Theorem 1, we have stated the following in (4):

H
(
x
(0)
i |x

(0)
j

)
= H

(
x
(t)
i |x

(t)
j ,Θ

(t)
{i,j} = Θ

(0)
{i,j}

)
. (C.1)
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For this equation to make sense, we have used that

H
(
x
(0)
i |x

(0)
j ,Θ

(t)
{i,j} = Θ

(0)
{i,j}

)
= H

(
x
(t)
i |x

(t)
j ,Θ

(t)
{i,j} = Θ

(0)
{i,j}

)
, (C.2)

and one may drop the conditioning at initialization since we have prescribed the parameter initializa-
tion scheme, we thus have (C.1).
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