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Abstract

We present the weak neural dependence lemma in deep neural networks

(DNN) with wide fully-connected layers and arbitrary nonlinear acধvaধons.

The lemma states that any two acধvaধons of the same layer have arbitrar-

ily low dependence regardless of the training stage. To the best of our

knowledge, we are the first to give a formal treatment of this phenomenon

aided by tools from informaধon theory. Our simulaধons onMNIST/CIFAR-

10 corroborate the theory. The lemma is able to simplify the analysis of

deep nets with reasonably wide layers.
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(L) MLP model used. (R) Illustraধon of ΘS.

D, Nl, φ(·): depth, width, and the acধvaধon funcধon of the network.

z
(t)
l , x

(t)
l : pre- and post-acধvaধon of layer l at ধme t.

H(xi), I(xi; xj): entropy of a neuron xi and the mutual informaধon (MI)

between two neurons xi, xj (in the same layer).

ΘS: all parameters that contribute to {xk}k∈S.

Constant Entropy Assumption

Let z be an arbitrary neuron from any layer but the last, we assume

the change of neural entropy H(z), ∆H(z), ađer training, approaches to
zero when layer width Nl becomes large:

lim
Nl→∞

∆H(z) = 0. (1)

TheWeak Neural Dependence Lemma

Let I := I(xi; xj) be the MI between any two neurons in the same layer

l other than the last, we have

lim
Nl→∞

I = 0. (2)

Sketch of the Proof

By definiধon,
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Since condiধoning reduces entropy,
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Since xi is independent of all parameters that do not contribute to it during

the forward pass,
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Hence
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and the lemma follows from the assumpধon and the iniধal condiধon
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)
= 0.

Simulation Results

We tested on a five-layer φ-acধvated MLP, trained on MNIST and CIFAR-

10 (not shown). We observe the convergence behaviour of the (average)

single neuron entropy as layer width becomes larger; and the convergence

of the (average) pairwise MI to the vicinity of zero, indicaধng low depen-

dence.

1. Average single neuron entropy.
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(a) φ = tanh.
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(b) φ = ReLU.

Average neuron entropy H̄ against different network width.

2. Average pairwise MI, which we call the dependence score ι.
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(a) φ = tanh.
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(b) φ = ReLU.

Dependence score ι of each layer against network width.

Consequences of the Lemma

Applicable to both pre/post-acধvaধons. The extension of the lemma

to pre-acধvaধons can be made with ease by redoing the proof. In

tanh-acধvated nets, the extension is even simpler since MI is invariant

to reparameterizaধon given by homeomorphisms (smooth inverধble

maps), in parধcular tanh−1.

Neural acধviধes as mulধ-variate Gaussians. When one looks at a

parধcular a network at some training stage, by central limit theorem,

the acধvaধons are approximately Gaussians. The Gaussian

approximaধon has been used in mulধple previous work for untrained

nets; our results further suggest that the same holds for trained MLPs

given reasonably wide layers.

Layers do not have to be too wide. The average individual neuron

entropy exhibited a convergence behaviour, and is correlated with the

training accuracy (not shown). Informaধon-theoreধcally, the average

entropy is able to characterize the uncertainty in neural acধviধes, and

relate to the capacity in terms of the the uncertainty/diversity of

hidden features. Increasing layer width ađer convergence at a higher

cost of computaধon, therefore, may not induce further gain.


