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Abstract

We present the weak neural dependence lemma in deep neural networks

(DNN) with wide fully-connected layers and arbitrary nonlinear ac va ons.

The lemma states that any two ac va ons of the same layer have arbitrar-

ily low dependence regardless of the training stage. To the best of our

knowledge, we are the first to give a formal treatment of this phenomenon

aided by tools from informa on theory. Our simula ons onMNIST/CIFAR-

10 corroborate the theory. The lemma is able to simplify the analysis of

deep nets with reasonably wide layers.
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(L) MLP model used. (R) Illustra on of ΘS.

D, Nl, φ(·): depth, width, and the ac va on func on of the network.

z
(t)
l , x

(t)
l : pre- and post-ac va on of layer l at me t.

H(xi), I(xi; xj): entropy of a neuron xi and the mutual informa on (MI)

between two neurons xi, xj (in the same layer).

ΘS: all parameters that contribute to {xk}k∈S.

Constant Entropy Assumption

Let z be an arbitrary neuron from any layer but the last, we assume

the change of neural entropy H(z), ∆H(z), a er training, approaches to

zero when layer width Nl becomes large:

lim
Nl→∞

∆H(z) = 0. (1)

TheWeak Neural Dependence Lemma

Let I := I(xi; xj) be the MI between any two neurons in the same layer

l other than the last, we have

lim
Nl→∞

I = 0. (2)

Sketch of the Proof

By defini on,
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Since condi oning reduces entropy,
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Since xi is independent of all parameters that do not contribute to it during

the forward pass,
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Hence
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and the lemma follows from the assump on and the ini al condi on
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)
= 0.

Simulation Results

We tested on a five-layer φ-ac vated MLP, trained on MNIST and CIFAR-

10 (not shown). We observe the convergence behaviour of the (average)

single neuron entropy as layer width becomes larger; and the convergence

of the (average) pairwise MI to the vicinity of zero, indica ng low depen-

dence.

1. Average single neuron entropy.
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(a) φ = tanh.
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(b) φ = ReLU.

Average neuron entropy H̄ against different network width.

2. Average pairwise MI, which we call the dependence score ι.
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(a) φ = tanh.
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(b) φ = ReLU.

Dependence score ι of each layer against network width.

Consequences of the Lemma

Applicable to both pre/post-ac va ons. The extension of the lemma

to pre-ac va ons can be made with ease by redoing the proof. In

tanh-ac vated nets, the extension is even simpler since MI is invariant

to reparameteriza on given by homeomorphisms (smooth inver ble

maps), in par cular tanh−1.

Neural ac vi es as mul -variate Gaussians. When one looks at a

par cular a network at some training stage, by central limit theorem,

the ac va ons are approximately Gaussians. The Gaussian

approxima on has been used in mul ple previous work for untrained

nets; our results further suggest that the same holds for trained MLPs

given reasonably wide layers.

Layers do not have to be too wide. The average individual neuron

entropy exhibited a convergence behaviour, and is correlated with the

training accuracy (not shown). Informa on-theore cally, the average

entropy is able to characterize the uncertainty in neural ac vi es, and

relate to the capacity in terms of the the uncertainty/diversity of

hidden features. Increasing layer width a er convergence at a higher

cost of computa on, therefore, may not induce further gain.


