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Abstract Simulation Results
We present the weak neural dependence lemma in deep neural networks We tested on a five-layer ¢-activated MLP, trained on MNIST and CIFAR-
(DNN) with wide fully-connected layers and arbitrary nonlinear activations. 10 (not shown). We observe the convergence behaviour of the (average)
The lemma states that any two activations of the same layer have arbitrar- single neuron entropy as layer width becomes larger; and the convergence
Ily low dependence regardless of the training stage. To the best of our of the (average) pairwise Ml to the vicinity of zero, indicating low depen-
knowledge, we are the first to give a formal treatment of this phenomenon dence.
alded by tools from information theory. Our simulations on MNIST/CIFAR- |
10 corroborate the theory. The lemma is able to simplify the analysis of 1. Average single neuron entropy.
deep nets with reasonably wide layers. ; p—— Layer 2
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(L) MLP model used. (R) lllustration of Og. B
Average neuron entropy H against different network width.

= D, N;, ¢(-): depth, width, and the activation function of the network.

(t) (1)

o | 2. Average pairwise MI, which we call the dependence score «.
" z;7, x; . pre- and post-activation of layer [ at time .

Layer 1 Layer 2 Layer 3 Layer 4
" H(xz;), I(x;;x,): entropy of a neuron x; and the mutual information (Ml)

between two neurons z;, x; (in the same layer).
" Og: all parameters that contribute to {xx }res.

Constant Entropy Assumption

Let z be an arbitrary neuron from any layer but the last, we assume
the change of neural entropy H(z), AH(z), after training, approaches to
zero when layer width IN; becomes large:

lim AH(z)=0. (1)
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(b) & = ReLU.

Dependence score ¢ of each layer against network width.
The Weak Neural Dependence Lemma

Let [ = I(x;; z;) be the MI between any two neurons in the same layer Consequences of the Lemma
[ other than the last, we have
Nlliinool = 0. (2) = Applicable to both pre/post-activations. The extension of the lemma

to pre-activations can be made with ease by redoing the proof. In

tanh-activated nets, the extension is even simpler since Ml is invariant
Sketch of the Proof to repa.ramete.nzahon g|\_/1€n by homeomorphisms (smooth invertible
maps), in particular tanh ™.

By definition, = Neural activities as multi-variate Gaussians. W When one |looks at a
t) [t t t)) (¢ articular a network at some training stage, by central limit theorem,
! (a;xf ); :13§ >> =4 <x§ )) -4 (:UE )‘$§ )) | ) fhe activations are a | s ssiane. T |
| - pproximately Gaussians. The Gaussian
Since conditioning reduces entropy, approximation has been used in multiple previous work for untrained

H (x§t>|x§t>, @?’?ﬁ.} — @g?j}) < H (x§t>|x§;f>) . (4) nets; our results further suggest that the same holds for trained MLPs
given reasonably wide layers.

Since z; is independent of all parameters that do not contribute to it during
the forward pass, = Layers do not have to be too wide. The average individual neuron

0), (0 ) (t t 0 (7 (0,0 entropy exhibited a convergence behaviour, and is correlated with the
training accuracy (not shown). Information-theoretically, the average

Hence - entropy is able to characterize the uncertainty in neural activities, and
I (xf;t); a:gt)) = H (xz(-t)) — H (xﬁ-t)\xy)) < H (xgt)) — H (SEE >\x§- >) , (6 relate to the capacity in terms of the the uncertainty/diversity of
and the lemma follows from the assumption and the initial condition hidden features. Increasing layer width after convergence at a higher

I (Q;Et); gp;t)) — 0. cost of computation, therefore, may not induce further gain.



